Comparative analysis of CAMS aerosol optical depth data and AERONET observations in the Eastern Mediterranean over 19 years

Author:

Tuna Tuygun Gizem,Elbir TolgaORCID

Abstract

AbstractAerosol optical depth (AOD) is an essential metric for evaluating the atmospheric aerosol load and its impacts on climate, air quality, and public health. In this study, the AOD data from the Copernicus Atmosphere Monitoring Service (CAMS) were validated against ground-based measurements from the Aerosol Robotic Network (AERONET) throughout the Eastern Mediterranean, a region characterized by diverse aerosol types and sources. A comparative analysis was performed on 3-hourly CAMS AOD values at 550 nm against observations from 20 AERONET stations across Cyprus, Greece, Israel, Egypt, and Turkey from 2003 to 2021. The CAMS AOD data exhibited a good overall agreement with AERONET AOD data, demonstrated by a Pearson correlation coefficient of 0.77, a mean absolute error (MAE) of 0.08, and a root mean square error (RMSE) of 0.11. Nonetheless, spatial and temporal variations were observed in the CAMS AOD data performance, with site-specific correlation coefficients ranging from 0.57 to 0.85, the lowest correlations occurring in Egypt and the highest in Greece. An underestimation of CAMS AOD was noted at inland sites with high AOD levels, while a better agreement was observed at coastal sites with lower AOD levels. The diurnal variation analysis indicated improved CAMS reanalysis performance during the afternoon and evening hours. Seasonally, CAMS reanalysis showed better agreement with AERONET AODs in spring and autumn, with lower correlation coefficients noted in summer and winter. This study marks the first comprehensive validation of CAMS AOD performance in the Eastern Mediterranean, offering significant enhancements for regional air quality and climate modeling, and underscores the essential role of consistent validation in refining aerosol estimations within this complex and dynamic geographic setting.

Funder

Dokuz Eylül University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3