Affiliation:
1. 0000 0004 1569 9707 grid.266436.3 Department of Chemical and Biomolecular Engineering University of Houston S222 Engineering Building 1 77204-4004 Houston TX USA
Abstract
Abstract
Triacetic acid lactone (TAL) (4-hydroxy-6-methyl-2-pyrone) can be upgraded into a variety of higher-value products, and has potential to be developed into a renewable platform chemical through metabolic engineering. We previously developed an endogenous TAL sensor based on the regulatory protein AraC, and applied it to screen 2-pyrone synthase (2-PS) variant libraries in E. coli, resulting in the identification of variants conferring up to 20-fold improved TAL production in liquid culture. In this study, the sensor-reporter system was further optimized and used to further improve TAL production from recombinant E. coli, this time by screening a genomic overexpression library. We identified new and unpredictable gene targets (betT, ompN, and pykA), whose plasmid-based expression improved TAL yield (mg/L/OD595) up to 49% over the control strain. This work further demonstrates the utility of customized transcription factors as molecular reporters in high-throughput engineering of biocatalytic strains.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献