Engineering Escherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system

Author:

Li Ye1,Qian Shuai1,Dunn Rachel1,Cirino Patrick C1

Affiliation:

1. 0000 0004 1569 9707 grid.266436.3 Department of Chemical and Biomolecular Engineering University of Houston S222 Engineering Building 1 77204-4004 Houston TX USA

Abstract

Abstract Triacetic acid lactone (TAL) (4-hydroxy-6-methyl-2-pyrone) can be upgraded into a variety of higher-value products, and has potential to be developed into a renewable platform chemical through metabolic engineering. We previously developed an endogenous TAL sensor based on the regulatory protein AraC, and applied it to screen 2-pyrone synthase (2-PS) variant libraries in E. coli, resulting in the identification of variants conferring up to 20-fold improved TAL production in liquid culture. In this study, the sensor-reporter system was further optimized and used to further improve TAL production from recombinant E. coli, this time by screening a genomic overexpression library. We identified new and unpredictable gene targets (betT, ompN, and pykA), whose plasmid-based expression improved TAL yield (mg/L/OD595) up to 49% over the control strain. This work further demonstrates the utility of customized transcription factors as molecular reporters in high-throughput engineering of biocatalytic strains.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3