Affiliation:
1. grid.413109.e 0000000097356249 Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology Tianjin University of Science and Technology No. 29, 13th Avenue, Tianjin Economic and Technological Development Area 300457 Tianjin China
2. Tianjin Food Safety and Low Carbon Manufacturing Collaborative Innovation Center 300457 Tianjin People′s Republic of China
Abstract
Abstract
Baker’s yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker’s yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker’s yeast using the method proposed in this paper.
Funder
National Natural Science Foundation of China
Changjiang Scholars and Innovative Research Team in University
the National High Technology Research, the Development Program of China (863 Program)
the Youth Foundation of Application Base and Frontier Technology Project of Tianjin
Science and Research Foundation of Tianjin University of Science and Technology
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献