Affiliation:
1. grid.22935.3f 0000000405308290 Department of Biotechnology, College of Food Science and Nutritional Engineering China Agricultural University PO Box 294, No. 17 Qinghua Donglu 100083 Haidian District Beijing China
2. grid.22935.3f 0000000405308290 Bioresource Utilization Laboratory, College of Engineering China Agricultural University 100083 Beijing China
Abstract
Abstract
A low molecular mass cutinase (designated TtcutA) from Thielavia terrestris was purified and biochemically characterized. The thermophilic fungus T. terrestris CAU709 secreted a highly active cutinase (90.4 U ml−1) in fermentation broth containing wheat bran as the carbon source. The cutinase was purified 19-fold with a recovery yield of 4.8 %. The molecular mass of the purified TtcutA was determined as 25.3 and 22.8 kDa using SDS-PAGE and gel filtration, respectively. TtcutA displayed optimal activity at pH 4.0 and 50 °C. It was highly stable up to 65 °C and in the broad pH range 2.5–10.5. Extreme stability in high concentrations (80 %, v/v) of solvents such as methanol, ethanol, acetone, acetonitrile, isopropanol, and dimethyl sulfoxide was observed for the enzyme. The K m values for this enzyme towards p-nitrophenyl (pNP) acetate, pNP butyrate, and pNP caproate were 7.7, 1.0, and 0.52 mM, respectively. TtcutA was able to efficiently degrade various ester polymers, including cutin, polyethylene terephthalate (PET), polycaprolactone (PCL), and poly(butylene succinate) (PBS) at hydrolytic rates of 3 μmol h−1 mg−1 protein, 1.1 mg h−1 mg−1 protein, 203.6 mg h−1 mg−1 protein, and 56.4 mg h−1 mg−1 protein, respectively. Because of these unique biochemical properties, TtcutA of T. terrestris may be useful in various industrial applications in the future.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献