Affiliation:
1. 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University 300072 Tianjin People’s Republic of China
2. 0000 0004 1761 2484 grid.33763.32 Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China
3. 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China
Abstract
Abstract
Cell wall is closely related to bacterial robustness and adsorption capacity, playing crucial roles in nisin production in Lactococcus lactis. Peptidoglycan (PG), the essential component of cell wall, is usually modified with MurNAc O-acetylation and GlcNAc N-deacetylation, catalyzed by YvhB and XynD, respectively. In this study, increasing the two modifications in L. lactis F44 improved autolysis resistance by decreasing the susceptibility to PG hydrolases. Furthermore, both modifications were positively associated with overall cross-linkage, contributing to cell wall integrity. The robust cell wall rendered the yvhB/xynD-overexpression strains more acid resistant, leading to the increase of nisin production in fed-batch fermentations by 63.7 and 62.9%, respectively. Importantly, the structural alterations also reduced nisin adsorption capacity, resulting in reduction of nisin loss. More strikingly, the co-overexpression strain displayed the highest nisin production (76.3% higher than F44). Our work provides a novel approach for achieving nisin overproduction via extensive cell wall remodeling.
Funder
National Natural Science Foundation of China
Funds for Creative Research Groups of China
National Key R&D Program of China
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献