Improvement of cell growth and l-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses

Author:

Xu Jianzhong1,Zhang Junlan2,Guo Yanfeng1,Zai Yugui1,Zhang Weiguo1

Affiliation:

1. grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800# Lihu Road 214122 WuXi People’s Republic of China

2. OriGene Biotechnology Co., Ltd 88# Meiliang Road 214122 WuXi People’s Republic of China

Abstract

Abstract Fructose-1,6-bisphosphatase (FBPase) and fructokinase (ScrK) have important roles in regenerating glucose-6-phosphate in the pentose phosphate pathway (PPP), and thus increasing l-lysine production. This article focuses on the development of l-lysine high-producing strains by heterologous expression of FBPase gene fbp and ScrK gene scrK in C. glutamicum lysCfbr with molasses as the sole carbon source. Heterologous expression of fbp and scrK lead to a decrease of residual sugar in fermentation broth, and heterologous expression of scrK prevents the fructose efflux. Heterologous expression of fbp and scrK not only increases significantly the activity of corresponding enzymes but also improves cell growth during growth on molasses. FBPase activities are increased tenfold by heterologous expression of fbp, whereas the FBPase activity is only increase fourfold during co-expression of scrK and fbp. Compared with glucose, the DCW of heterologous expression strains are higher on molasses except co-expression of fbp and scrK strain. In addition, heterologous expression of fbp and scrK can strongly increase the l-lysine production with molasses as the sole carbon source. The highest increase (88.4 %) was observed for C. glutamicum lysCfbr pDXW-8-fbp-scrK, but the increase was also significant for C. glutamicum lysCfbr pDXW-8-fbp (47.2 %) and C. glutamicum lysCfbr pDXW-8-scrK (36.8 %). By-products, such as glycerol and dihydroxyacetone, are decreased by heterologous expression of fbp and scrK, whereas trehalose is only slightly increased. The strategy for enhancing l-lysine production by regeneration of glucose-6-phosphate in PPP may provide a reference to enhance the production of other amino acids during growth on molasses or starch.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3