Non-linear Time Series Prediction using Improved CEEMDAN, SVD and LSTM

Author:

Poongadan Sameer,Lineesh M. C.

Abstract

AbstractThis study recommends a new time series forecasting model, namely ICEEMDAN - SVD - LSTM model, which coalesces Improved Complete Ensemble EMD with Adaptive Noise, Singular Value Decomposition and Long Short Term Memory network. It can be applied to analyse Non-linear and non-stationary data. The framework of this model is comprised of three levels, namely ICEEMDAN level, SVD level and LSTM level. The first level utilized ICEEMDAN to break up the series into some IMF components along with a residue. The SVD in the second level accounts for de-noising of every IMF component and residue. LSTM forecasts all the resultant IMF components and residue in third level. To obtain the forecasted values of the original data, the predictions of all IMF components and residue are added. The proposed model is contrasted with other extant ones, namely LSTM model, EMD - LSTM model, EEMD - LSTM model, CEEMDAN - LSTM model, EEMD - SVD - LSTM model, ICEEMDAN - LSTM model and CEEMDAN - SVD - LSTM model. The comparison bears witness to the potential of the recommended model over the traditional models.

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Wei WW( 2006) Time series analysis. The Oxford handbook of quantitative methods in psychology. Vol. 2

2. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, London

3. Demongeot J, Oshinubi K, Rachdi M, Hobbad L, Alahiane M, Iggui S, Gaudart J, Ouassou I (2021) The application of arima model to analyze covid-19 incidence pattern in several countries. J Math Comput Sci 12:10

4. Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62

5. Badr A, Makarovskikh T, Mishra P, Abotaleb M, Al Khatib AMG, Karakaya K, Redjala S, Dubey A, Atta E (2021) Modelling and forecasting of web traffic using holt’s linear, bats and tbats models. Addison-Wesley. J Math Comput Sci 1:3887–3915

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3