Error-Correcting Output Codes in the Framework of Deep Ordinal Classification

Author:

Barbero-Gómez JavierORCID,Gutiérrez Pedro AntonioORCID,Hervás-Martínez CésarORCID

Abstract

AbstractAutomatic classification tasks on structured data have been revolutionized by Convolutional Neural Networks (CNNs), but the focus has been on binary and nominal classification tasks. Only recently, ordinal classification (where class labels present a natural ordering) has been tackled through the framework of CNNs. Also, ordinal classification datasets commonly present a high imbalance in the number of samples of each class, making it an even harder problem. Focus should be shifted from classic classification metrics towards per-class metrics (like AUC or Sensitivity) and rank agreement metrics (like Cohen’s Kappa or Spearman’s rank correlation coefficient). We present a new CNN architecture based on the Ordinal Binary Decomposition (OBD) technique using Error-Correcting Output Codes (ECOC). We aim to show experimentally, using four different CNN architectures and two ordinal classification datasets, that the OBD+ECOC methodology significantly improves the mean results on the relevant ordinal and class-balancing metrics. The proposed method is able to outperform a nominal approach as well as already existing ordinal approaches, achieving a mean performance of $${{\,\mathrm{\textit{RMSE}}\,}}= 1.0797$$ RMSE = 1.0797 for the Retinopathy dataset and $${{\,\mathrm{\textit{RMSE}}\,}}= 1.1237$$ RMSE = 1.1237 for the Adience dataset averaged over 4 different architectures.

Funder

Agencia Estatal de Investigación

Consejería de Salud y Familias, Junta de Andalucía

Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía

Programa Operativo FEDER Andalucía

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,General Neuroscience,Software

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3