A Single Image High-Perception Super-Resolution Reconstruction Method Based on Multi-layer Feature Fusion Model with Adaptive Compression and Parameter Tuning

Author:

Zhang RuiORCID,Ren Wenyu,Pan Lihu,Bai Xiaolu,Li Ji

Abstract

AbstractWe propose a simple image high-perception super-resolution reconstruction method based on multi-layer feature fusion model with adaptive compression and parameter tuning. The aim is to further balance the high and low-frequency information of an image, enrich the detailed texture to improve perceptual quality, and improve the adaptive optimization and generalization of the model in the process of super-resolution reconstruction. First, an effective multi-layer fusion super-resolution (MFSR) basic model is constructed by the design of edge enhancement, refine layering, enhanced super-resolution generative adversarial network and other sub-models, and effective multi-layer fusion. This further enriches the image representation of features of different scales and depths and improves the feature representation of high and low-frequency information in a balanced way. Next, a total loss function of the generator is constructed with adaptive parameter tuning performance. The overall adaptability of the model is improved through adaptive weight distribution and fusion of content loss, perceptual loss, and adversarial loss, and improving the error while reducing the edge enhancement model. Finally, a fitness function with the evaluation perceptual function as the optimization strategy is constructed, and the model compression and adaptive tuning of MFSR are carried out based on the multi-mechanism fusion strategy. Consequently, the construction of the adaptive MFSR model is realized. Adaptive MFSR can maintain high peak signal to noise ratio and structural similarity on the test sets Set5, Set14, and BSD100, and achieve high-quality reconstructed images with low learned perceptual image patch similarity and perceptual index, while having good generalization capabilities.

Funder

Foundation of Shanxi Province Engineering Research Center for Equipment Digitization and PHM

Science and Technology Innovation Project of Higher Education in Shanxi Province

Basic Research Project of Shanxi Province under Grants

Shanxi Key Laboratory of Advanced Control and Equipment Intelligence

Excellent Innovation Project for Graduate students in Shanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3