On Stage-Wise Backpropagation for Improving Cheng’s Method for Fully Connected Cascade Networks

Author:

Mizutani Eiji,Kubota Naoyuki,Truong Tam Chi

Abstract

AbstractIn this journal, Cheng has proposed a backpropagation (BP) procedure called BPFCC for deep fully connected cascaded (FCC) neural network learning in comparison with a neuron-by-neuron (NBN) algorithm of Wilamowski and Yu. Both BPFCC and NBN are designed to implement the Levenberg-Marquardt method, which requires an efficient evaluation of the Gauss-Newton (approximate Hessian) matrix $$\nabla \textbf{r}^\textsf{T} \nabla \textbf{r}$$ r T r , the cross product of the Jacobian matrix $$\nabla \textbf{r}$$ r of the residual vector $$\textbf{r}$$ r in nonlinear least squares sense. Here, the dominant cost is to form $$\nabla \textbf{r}^\textsf{T} \nabla \textbf{r}$$ r T r by rank updates on each data pattern. Notably, NBN is better than BPFCC for the multiple $$q~\!(>\!1)$$ q ( > 1 ) -output FCC-learning when q rows (per pattern) of the Jacobian matrix $$\nabla \textbf{r}$$ r are evaluated; however, the dominant cost (for rank updates) is common to both BPFCC and NBN. The purpose of this paper is to present a new more efficient stage-wise BP procedure (for q-output FCC-learning) that reduces the dominant cost with no rows of $$\nabla \textbf{r}$$ r explicitly evaluated, just as standard BP evaluates the gradient vector $$\nabla \textbf{r}^\textsf{T} \textbf{r}$$ r T r with no explicit evaluation of any rows of the Jacobian matrix $$\nabla \textbf{r}$$ r .

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Reference47 articles.

1. Beale MH, Hagan MT, Demuth HB (2014) “calcjejj.m,” a script file in the Matlab Neural Network Toolbox, The MathWorks, Inc., Version 8.2

2. Bryson AE (1961) A gradient method for optimizing multi-stage allocation processes. In: Proceedings of Harvard University symposium on digital computers and their applications, pp 125–135

3. Cheng Y (2017) Backpropagation for fully connected cascade networks. Neural Process Lett 46:293–311

4. Conn AR, Gould NIM, Toint PL (2000) Trust-Region Methods, SIAM

5. Demmel JW (1997) Applied numerical linear algebra. SIAM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3