Multi-Model UNet: An Adversarial Defense Mechanism for Robust Visual Tracking

Author:

Suttapak Wattanapong,Zhang Jianfu,Zhao Haohuo,Zhang Liqing

Abstract

AbstractCurrently, state-of-the-art object-tracking algorithms are facing a severe threat from adversarial attacks, which can significantly undermine their performance. In this research, we introduce MUNet, a novel defensive model designed for visual tracking. This model is capable of generating defensive images that can effectively counter attacks while maintaining a low computational overhead. To achieve this, we experiment with various configurations of MUNet models, finding that even a minimal three-layer setup significantly improves tracking robustness when the target tracker is under attack. Each model undergoes end-to-end training on randomly paired images, which include both clean and adversarial noise images. This training separately utilizes pixel-wise denoiser and feature-wise defender. Our proposed models significantly enhance tracking performance even when the target tracker is attacked or the target frame is clean. Additionally, MUNet can simultaneously share its parameters on both template and search regions. In experimental results, the proposed models successfully defend against top attackers on six benchmark datasets, including OTB100, LaSOT, UAV123, VOT2018, VOT2019, and GOT-10k. Performance results on all datasets show a significant improvement over all attackers, with a decline of less than 4.6% for every benchmark metric compared to the original tracker. Notably, our model demonstrates the ability to enhance tracking robustness in other blackbox trackers.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3