Funder
Council of Scientific and Industrial Research, India
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference20 articles.
1. Bakhtin, I.A. 1989. The contraction mapping principle in quasi-metric spaces. Functional Analysis 30: 26–37.
2. Branciari, A. 2000. A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen 57: 31–37.
3. Czerwik, S. 1993. Contraction mappings in metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis 1: 5–11.
4. Dey, D., R. Fierro, and M. Saha. 2018. Well-posedness of fixed point problems. Journal of Fixed Point Theory and Applications. https://doi.org/10.1007/s11784-018-0538-i.
5. George, R., S. Radenovi, K.P. Reshma, and S. Shukla. 2015. Rectangular metric space and contraction principles. Journal of Nonlinear Sciences and Applications 8: 1005–1013.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献