Sub-linear convergence of a stochastic proximal iteration method in Hilbert space

Author:

Eisenmann MonikaORCID,Stillfjord TonyORCID,Williamson MånsORCID

Abstract

AbstractWe consider a stochastic version of the proximal point algorithm for convex optimization problems posed on a Hilbert space. A typical application of this is supervised learning. While the method is not new, it has not been extensively analyzed in this form. Indeed, most related results are confined to the finite-dimensional setting, where error bounds could depend on the dimension of the space. On the other hand, the few existing results in the infinite-dimensional setting only prove very weak types of convergence, owing to weak assumptions on the problem. In particular, there are no results that show strong convergence with a rate. In this article, we bridge these two worlds by assuming more regularity of the optimization problem, which allows us to prove convergence with an (optimal) sub-linear rate also in an infinite-dimensional setting. In particular, we assume that the objective function is the expected value of a family of convex differentiable functions. While we require that the full objective function is strongly convex, we do not assume that its constituent parts are so. Further, we require that the gradient satisfies a weak local Lipschitz continuity property, where the Lipschitz constant may grow polynomially given certain guarantees on the variance and higher moments near the minimum. We illustrate these results by discretizing a concrete infinite-dimensional classification problem with varying degrees of accuracy.

Funder

Knut och Alice Wallenbergs Stiftelse

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3