Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

Author:

Liuzzi G.,Locatelli M.ORCID,Piccialli V.,Rass S.

Abstract

AbstractIn this paper we address game theory problems arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problems addressed in this paper an additional quadratic term is added to the minimization problem. Such term represents switching costs, i.e., the costs for the defender of switching from a given strategy to another one at successive rounds of a Nash game. The resulting problems are nonconvex QP ones with linear constraints and turn out to be very challenging. We will show that the most recent approaches for the minimization of nonconvex QP functions over polytopes, including commercial solvers such as and , are unable to solve to optimality even test instances with $$n=50$$ n = 50 variables. For this reason, we propose to extend with them the current benchmark set of test instances for QP problems. We also present a spatial branch-and-bound approach for the solution of these problems, where a predominant role is played by an optimality-based domain reduction, with multiple solutions of LP problems at each node of the branch-and-bound tree. Of course, domain reductions are standard tools in spatial branch-and-bound approaches. However, our contribution lies in the observation that, from the computational point of view, a rather aggressive application of these tools appears to be the best way to tackle the proposed instances. Indeed, according to our experiments, while they make the computational cost per node high, this is largely compensated by the rather slow growth of the number of nodes in the branch-and-bound tree, so that the proposed approach strongly outperforms the existing solvers for QP problems.

Funder

Università degli Studi di Parma

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3