A projected-search interior-point method for nonlinearly constrained optimization

Author:

Gill Philip E.,Zhang Minxin

Abstract

AbstractThis paper concerns the formulation and analysis of a new interior-point method for constrained optimization that combines a shifted primal-dual interior-point method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual variables. Shifts on the dual variables allow the method to be safely “warm started” from a good approximate solution and avoids the possibility of very large solutions of the associated path-following equations. The approximate Newton direction is used in conjunction with a new projected-search line-search algorithm that employs a flexible non-monotone quasi-Armijo line search for the minimization of each penalty-barrier function. Numerical results are presented for a large set of constrained optimization problems. For comparison purposes, results are also given for two primal-dual interior-point methods that do not use projection. The first is a method that shifts both the primal and dual variables. The second is a method that involves shifts on the primal variables only. The results show that the use of both primal and dual shifts in conjunction with projection gives a method that is more robust and requires significantly fewer iterations. In particular, the number of times that the search direction must be computed is substantially reduced. Results from a set of quadratic programming test problems indicate that the method is particularly well-suited to solving the quadratic programming subproblem in a sequential quadratic programming method for nonlinear optimization.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Gill, P.E., Zhang, M.: Equations for a projected-search path-following method for nonlinear optimization. Center for Computational Mathematics Report CCoM 22-02, Center for Computational Mathematics, University of California, San Diego, La Jolla, CA (2022)

2. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual penalty-barrier method for nonlinear optimization. SIAM J. Optim. 30(2), 1067–1093 (2020)

3. Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010)

4. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, London (1969)

5. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3