Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables

Author:

Soloviev Vicente P.ORCID,Larrañaga Pedro,Bielza Concha

Abstract

AbstractMany real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.

Funder

Repsol

Aingura IIoT

ETXE-TAR Group

Agencia Estatal de Investigación

Spanish Ministry of Science and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Control and Optimization,Discrete Mathematics and Combinatorics,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EDAspy: An extensible python package for estimation of distribution algorithms;Neurocomputing;2024-09

2. An enhanced Kalman filtering and historical learning mechanism driven estimation of distribution algorithm;Swarm and Evolutionary Computation;2024-04

3. Quantum Entanglement inspired Differential Evolution algorithm;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

4. Semiparametric Estimation of Distribution Algorithms for Continuous Optimization;IEEE Transactions on Evolutionary Computation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3