Estimating Ore Production in Open-pit Mines Using Various Machine Learning Algorithms Based on a Truck-Haulage System and Support of Internet of Things
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Environmental Science
Link
https://link.springer.com/content/pdf/10.1007/s11053-020-09766-5.pdf
Reference99 articles.
1. Alarie, S., & Gamache, M. (2002). Overview of solution strategies used in truck dispatching systems for open pit mines. International Journal of Surface Mining, Reclamation, and Environment, 16(1), 59–76.
2. Amiri, M., Amnieh, H. B., Hasanipanah, M., & Khanli, L. M. (2016). A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure. Engineering with Computers, 32(4), 631–644.
3. Baek, J., & Choi, Y. (2019a). Deep neural network for ore production and crusher utilization prediction of truck haulage system in underground mine. Applied Sciences, 9(19), 4180.
4. Baek, J., & Choi, Y. (2019b). Simulation of truck haulage operations in an underground mine using big data from an ICT-based mine safety management system. Applied Sciences, 9(13), 2639.
5. Baek, J., & Choi, Y. (2020). Deep neural network for predicting ore production by truck-haulage systems in open-pit mines. Applied Sciences, 10(5), 1657.
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Strategic Load Management: Enhancing Eco-Efficiency in Mining Operations Through Automated Technologies;Results in Engineering;2024-09
2. Machine learning for open-pit mining: a systematic review;International Journal of Mining, Reclamation and Environment;2024-06-20
3. Predicting open-pit mine production using machine learning techniques;Journal of Sustainable Mining;2024-02-16
4. Deep Neural Network Models for Improving Truck Productivity Prediction in Open-pit Mines;Mining, Metallurgy & Exploration;2024-02-12
5. Transition to intelligent fleet management systems in open pit mines: A critical review on application of reinforcement-learning-based systems;Mining Technology: Transactions of the Institutions of Mining and Metallurgy;2024-01-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3