Abstract
AbstractBetween the 4th and the 6th of November 1994, Piedmont and the western part of Liguria (two regions in north-western Italy) were hit by heavy rainfalls that caused the flooding of the Po, the Tanaro rivers and several of their tributaries, causing 70 victims and the displacement of over 2000 people. At the time of the event, no early warning system was in place and the concept of hydro-meteorological forecasting chain was in its infancy, since it was still limited to a reduced number of research applications, strongly constrained by coarse-resolution modelling capabilities both on the meteorological and the hydrological sides. In this study, the skills of the high-resolution CIMA Research Foundation operational hydro-meteorological forecasting chain are tested in the Piedmont 1994 event. The chain includes a cloud-resolving numerical weather prediction (NWP) model, a stochastic rainfall downscaling model, and a continuous distributed hydrological model. This hydro-meteorological chain is tested in a set of operational configurations, meaning that forecast products are used to initialise and force the atmospheric model at the boundaries. The set consists of four experiments with different options of the microphysical scheme, which is known to be a critical parameterisation in this kind of phenomena. Results show that all the configurations produce an adequate and timely forecast (about 2 days ahead) with realistic rainfall fields and, consequently, very good peak flow discharge curves. The added value of the high resolution of the NWP model emerges, in particular, when looking at the location of the convective part of the event, which hit the Liguria region.
Funder
Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献