Author:
Domokos Sophia K.,Mann Nelia
Abstract
Abstract
Top-down holographic QCD models often work in the “probe” (or “quenched”) limit, which assumes that the number of colors is much greater than the number of flavors. Relaxing this limit is essential to a fuller understanding of holography and more accurate phenomenological predictions. In this work, we focus on a mixing of glueball and meson mass eigenstates that arises from the DBI action as a finite Nf/Nc effect. For concreteness, we work in the Witten-Sakai-Sugimoto model, and show that this mixing must be treated in conjunction with the backreaction of the flavor branes onto the background geometry. Including the backreaction with the simplification that it is “smeared out” over the compact transverse direction, we derive a corrected effective action for the vector glueball and scalar states. Along the way, we observe a Stückelberg-like mechanism that restores translation invariance in the transverse direction. We also derive a general technique, that lends itself easily to numerics, for finding mass eigenstates of Lagrangians with vector-scalar mixing. We then calculate the first order corrections to the mass spectra of both the vector and scalar particles, and show that the term that explicitly mixes vector and scalar states is the most significant correction to the masses of low-lying scalar mesons.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献