Could Tailored Chirp Stimuli Benefit Measurement of the Supra-threshold Auditory Brainstem Wave-I Response?

Author:

de Boer JessicaORCID,Hardy Alexander,Krumbholz KatrinORCID

Abstract

AbstractAuditory brainstem responses (ABRs) to broadband clicks are strongly affected by dyssynchrony, or “latency dispersion”, of their frequency-specific cochlear contributions. Optimized chirp stimuli, designed to compensate for cochlear dispersion, can afford substantial increase in broadband ABR amplitudes, particularly for the prominent wave-V deflection. Reports on the smaller wave I, however, which may be useful for measuring cochlear synaptopathy, have been mixed. This study aimed to test previous claims that ABR latency dispersion differs between waves I and V, and between males and females, and thus that using wave- and/or sex-tailored chirps may provide more reliable wave-I benefit. Using the derived-band technique, we measured responses from frequency-restricted (one-octave-wide) cochlear regions to energy-matched click and chirp stimuli. The derived-band responses’ latencies were used to assess any wave- and/or sex-related dispersion differences across bands, and their amplitudes, to evaluate any within-band dispersion differences. Our results suggest that sex-related dispersion difference within the lowest-frequency cochlear regions (< 1 kHz), where dispersion is generally greatest, may be a predominant driver of the often-reported sex difference in broadband ABR amplitude. At the same time, they showed no systematic dispersion difference between waves I and V. Instead, they suggest that reduced chirp benefit on wave I may arise as a result of chirp-induced desynchronization of on- and off-frequency responses generated at the same cochlear places, and resultant reduction in response contributions from higher-frequency cochlear regions, to which wave I is thought to be particularly sensitive.

Funder

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Sensory Systems,Otorhinolaryngology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3