Author:
Gardella Eusebio,Geffen Shirly,Kranz Julian,Naryshkin Petr,Vaccaro Andrea
Abstract
AbstractWe introduce the notion of tracial amenability for actions of discrete groups on unital, tracial C$$^*$$
∗
-algebras, as a weakening of amenability where all the relevant approximations are done in the uniform trace norm. We characterize tracial amenability with various equivalent conditions, including topological amenability of the induced action on the trace space. Our main result concerns the structure of crossed products: for groups containing the free group $$F_2$$
F
2
, we show that outer, tracially amenable actions on simple, unital, $$\mathcal {Z}$$
Z
-stable C$$^*$$
∗
-algebras always have purely infinite crossed products. Finally, we give concrete examples of tracially amenable actions of free groups on simple, unital AF-algebras.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Abadie, F., Buss, A., Ferraro, D.: Amenability and approximation properties for partial actions and Fell bundles. Bull. Braz. Math. Soc. (N.S.) 53, 173–227 (2022)
2. Anantharaman-Delaroche, C.: Systèmes dynamiques non commutatifs et moyennabilité. Math. Ann. 279, 297–315 (1987)
3. Antoine, R., Perera, F., Thiel, H.: Tensor products and regularity properties of Cuntz semigroups. Mem. Amer. Math. Soc. 251, viii+191 (2018)
4. Bearden, A., Crann, J.: Amenable dynamical systems over locally compact groups. Ergod. Theory Dynam. Syst. 42, 2468–2508 (2022)
5. Blackadar, B.: $$K$$-theory for operator algebras, Mathematical Sciences Research Institute Publications 5, 2nd edn. Cambridge University Press, Cambridge (1988)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献