$${\text {Aut}}({\mathbb {F}}_5)$$ has property (T)
Author:
Funder
European Research Council
Narodowe Centrum Nauki
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s00208-019-01874-9.pdf
Reference35 articles.
1. Bachoc, C., Gijswijt, D.C., Schrijver, A., Vallentin, F.: Invariant semidefinite programs. In: Handbook on semidefinite, conic and polynomial optimization, volume 166 of Internat. Ser. Oper. Res. Management Sci., pp. 219–269. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-0769-0_9
2. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511542749
3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671
4. Bogopolski, O., Vikentiev, R.: Subgroups of small index in $${{\rm Aut}}(F_n)$$ and Kazhdan’s property (T). In: Combinatorial and Geometric Group Theory, Trends Math., pp. 1–17. Birkhäuser/Springer Basel AG, Basel (2010). https://doi.org/10.1007/978-3-7643-9911-5_1
5. Breuillard, E.: Expander graphs, property $$(\tau )$$ and approximate groups. In: Geometric Group Theory, volume 21 of IAS/Park City Math. Ser., pp. 325–377. Amer. Math. Soc., Providence (2014). https://doi.org/10.1090/pcms/021
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A substitute for Kazhdan’s property (T) for universal nonlattices;Analysis & PDE;2024-08-21
2. Virtual algebraic fibrations of surface-by-surface groups and orbits of the mapping class group;Journal of Algebra;2024-08
3. Spectral Gap for the Cohomological Laplacian of SL 3 (ℤ);Experimental Mathematics;2024-04-03
4. On virtual indicability and property (T) for outer automorphism groups of RAAGs;Groups, Geometry, and Dynamics;2023-11-30
5. On order units in the augmentation ideal;P AM MATH SOC;2023-11-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3