Abstract
AbstractWe study non-vanishing of Dirichlet L-functions at the central point under the unlikely assumption that there exists an exceptional Dirichlet character. In particular we prove that if $$\psi $$
ψ
is a real primitive character modulo $$D \in \mathbb {N}$$
D
∈
N
with $$L(1, \psi ) \ll (\log D)^{-25-\varepsilon }$$
L
(
1
,
ψ
)
≪
(
log
D
)
-
25
-
ε
, then, for any prime $$q \in [D^{300}, D^{O(1)}]$$
q
∈
[
D
300
,
D
O
(
1
)
]
, one has $$L(1/2, \chi ) \ne 0$$
L
(
1
/
2
,
χ
)
≠
0
for almost all Dirichlet characters $$\chi \, (\textrm{mod} \, q)$$
χ
(
mod
q
)
.
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Balasubramanian, R., Kuma Murty, V.: Zeros of Dirichlet $$L$$-functions. Ann. Sci. École Norm. Sup. (4) 25(5), 567–615 (1992)
2. Bui, Hung M., Pratt, Kyle, Zaharescu, Alexandru: Exceptional characters and nonvanishing of Dirichlet $$L$$-functions. Math. Ann. 380(1–2), 593–642 (2021)
3. Chowla, S.: The Riemann hypothesis and Hilbert’s tenth problem. In: Mathematics and its Applications, Vol. 4. Gordon and Breach Science Publishers, New York (1965)
4. Conrey, J.B., Iwaniec, H.: Critical zeros of lacunary $$L$$-functions. Acta Arith. 195(3), 217–268 (2020)
5. Iwaniec, H., Sarnak, P.: Dirichlet $$L$$-functions at the central point. In: Number Theory in Progress, vol. 2 (Zakopane-Kościelisko, 1997), pp. 941–952. de Gruyter, Berlin (1999)