Suspension spectra of matrix algebras, the rank filtration, and rational noncommutative CW-spectra

Author:

Arone GregoryORCID,Barnea Ilan,Schlank Tomer M.

Abstract

AbstractIn a companion paper (Arone et al. in Noncommutative CW-spectra as enriched presheaves on matrix algebras, arXiv:2101.09775, 2021) we introduced the stable $$\infty $$ -category of noncommutative CW-spectra, which we denoted $$\mathtt {NSp}$$ NSp . Let $${\mathcal {M}}$$ M denote the full spectrally enriched subcategory of $$\mathtt {NSp}$$ NSp whose objects are the non-commutative suspension spectra of matrix algebras. In Arone et al. (2021) we proved that $$\mathtt {NSp}$$ NSp is equivalent to the $$\infty $$ -category of spectral presheaves on $${\mathcal {M}}$$ M . In this paper we investigate the structure of $${\mathcal {M}}$$ M , and derive some consequences regarding the structure of $$\mathtt {NSp}$$ NSp . To begin with, we introduce a rank filtration of $${\mathcal {M}}$$ M . We show that the mapping spectra of $${\mathcal {M}}$$ M map naturally to the connective K-theory spectrum ku, and that the rank filtration of $${\mathcal {M}}$$ M is a lift of the classical rank filtration of ku. We describe the subquotients of the rank filtration in terms of spaces of direct-sum decompositions which also arose in the study of K-theory and of Weiss’s orthogonal calculus. We prove that the rank filtration stabilizes rationally after the first stage. Using this we give an explicit model of the rationalization of $$\mathtt {NSp}$$ NSp as presheaves of rational spectra on the category of finite-dimensional Hilbert spaces and unitary transformations up to scaling. Our results also have consequences for the p-localization and the chromatic localization of $${\mathcal {M}}$$ M .

Funder

Israel Science Foundation

United States-Israel Binational Science Foundation

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference29 articles.

1. Andersen, K.K.S., Grodal, J.: A Baues fibration category structure on Banach and $$C^*$$-algebras, preprint. http://www.math.ku.dk/~jg/papers/fibcat.pdf (1997)

2. Arone, G.: The Weiss derivatives of $$BO(-)$$ and $$BU(-)$$. Topology 41(3), 451–481 (2002)

3. Arone, G.: Iterates of the suspension map and Mitchell’s finite spectra with $$A_k$$-free cohomology. Math. Res. Lett. 5(4), 485–496 (1998)

4. Arone, G., Barnea I., Schlank, T.M.: Noncommutative CW-spectra as enriched presheaves on matrix algebras (2021). arXiv:2101.09775

5. Arone, G.Z., Dwyer, W.G., Lesh, K.: Loop structures in Taylor towers, algebraic and geometric. Topology 8, 173–210 (2008)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noncommutative CW-spectra as enriched presheaves on matrix algebras;Journal of Noncommutative Geometry;2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3