Finding solutions with distinct variables to systems of linear equations over $$\mathbb {F}_p$$

Author:

Sauermann Lisa

Abstract

AbstractLet us fix a prime p and a homogeneous system of m linear equations $$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + + a j , k x k = 0 for $$j=1,\dots ,m$$ j = 1 , , m with coefficients $$a_{j,i}\in \mathbb {F}_p$$ a j , i F p . Suppose that $$k\ge 3m$$ k 3 m , that $$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + + a j , k = 0 for $$j=1,\dots ,m$$ j = 1 , , m and that every $$m\times m$$ m × m minor of the $$m\times k$$ m × k matrix $$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large) n, any subset $$A\subseteq \mathbb {F}_p^n$$ A F p n of size $$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution $$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to the given system of equations such that the vectors $$x_1,\dots ,x_k\in A$$ x 1 , , x k A are all distinct. Here, C and $$\Gamma $$ Γ are constants only depending on p, m and k such that $$\Gamma <p$$ Γ < p . The crucial point here is the condition for the vectors $$x_1,\dots ,x_k$$ x 1 , , x k in the solution $$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to be distinct. If we relax this condition and only demand that $$x_1,\dots ,x_k$$ x 1 , , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Slice Rank Polynomial Method – A Survey a Few Years Later;Surveys in Combinatorics 2024;2024-06-13

2. Excluding Affine Configurations over a Finite Field;DISCRETE ANAL;2023

3. On the Size of Subsets of $\mathbb{F}_q^n$ Avoiding Solutions to Linear Systems with Repeated Columns;The Electronic Journal of Combinatorics;2023-10-06

4. High-rank subtensors of high-rank tensors;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3