Hot Deformation Characteristic and Strain Dependent Constitutive Flow Stress Modelling of Ti + Nb Stabilized Interstitial Free Steel

Author:

Ghosh SumitORCID,Somani Mahesh Chandra,Setman Daria,Mula Suhrit

Abstract

Abstract An effort has been made to establish a relation between Zener–Hollomon parameter, flow stress and dynamic recrystallization (DRX). In this context, the plastic flow behavior of Ti + Nb stabilized interstitial free (IF) steel was investigated in a temperature range of 650–1100 °C and at constant true strain rates in the range 10−3–10 s−1, to a total true strain of 0.7. The flow stress curves can be categorized into two distinct types, i.e. with/without the presence of steady-state flow following peak stress behavior. A novel constitutive model comprising the strain effect on the activation energy of DRX and other material constants has been established to predict the constitutive flow behavior of the IF steel in both α and γ phase regions, separately. Predicted flow stress seems to correlate well with the experimental data both in γ and α phase regions with a high correlation coefficient (0.982 and 0.936, respectively) and low average absolute relative error (7 and 11%, respectively) showing excellent fitting. A detailed analysis of the flow stress, activation energy of DRX and stress exponent in accord with the modelled equations suggests that dislocation glide controlled by dislocation climb is the dominant mechanism for the DRX, as confirmed by the transmission electron microscopy analysis. Graphic Abstract

Funder

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3