A multi-technique approach to unveil the composition and fabrication of a pre-Roman glass masterpiece: a double-faced human-head shape polychrome glass pendant (2nd -1st c. BC)

Author:

Barroso-Solares S.,Estalayo E.,Aramendia J.,Rodriguez-Gutierrez E.,Sanz-Minguez C.,Prieto A. C.,Madariaga J. M.,Pinto J.

Abstract

AbstractPre-Roman glass craftsmanship reached its summit with the development of complex polychrome glass beads, being the Phoenician glass pendants the most exquisite and elaborate example. The uniqueness and complexity of such findings could reveal key information for the understanding of the production and trade of glass pieces at that age. However, these findings have practically never been studied from a physic-chemical perspective. In this work, a remarkable polychrome glass pendant (2nd -1st c. BC) found at the archaeological site of Pintia (Padilla de Duero, Valladolid, Spain) is studied by a multi-analytical non-destructive approach, employing X-ray tomography to understand its fabrication procedure, as well as X-ray fluorescence (XRF) and Raman spectroscopy, both employed in microscopic mode, to determine the composition of each glass employed in its fabrication. The outstanding preservation state and well-defined archaeological context of this glass pendant offered a unique opportunity to expand the understanding of pre-Roman glass pieces, while the combination of the experimental techniques employed provided the first complete and detailed study of a Phoenician glass pendant. The fabrication procedure of the pendant has been identified step-by-step, showing evidence of the use of pre-made pieces for the eyes, as well as hints of its fabrication in a secondary workshop. Moreover, the microchemical analysis of the vividly colored glasses by XRF and Raman spectroscopy revealed a composition compatible with the use of natron as fluxing agent, typical of Phoenician glass, the presence of surface alterations corresponding to carbonatation processes, as well as the nature of the employed chromophores or pigments: Mn, Cu, and Co for the blue, Fe-S for the black, CaSb2O7 and CaSb2O7 + TiO2 for two diverse white glasses, and a pyrochloric triple oxide (Pb2Sb2 − xSnxO7−x/2) and lead oxides for the yellow. Remarkably, the use of pyrochloric triple oxides as yellow pigments has scarcely been previously reported at that age. Finally, the identification by Raman spectroscopy of CaSb2O7 and the β-phase of CaSiO3, as well as the Raman spectra features of the glass matrix corresponding to the blue glass, indicated maximum firing temperatures below 1100 °C.

Funder

Universidad de Valladolid

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3