Identification and quantification of projectile impact marks on bone: new experimental insights using osseous points

Author:

Yeshurun Reuven,Doyon Luc,Tejero José-Miguel,Walter Rudolf,Huber Hannah,Andrews Robin,Kitagawa Keiko

Abstract

AbstractShifts in projectile technology potentially document human evolutionary milestones, such as adaptations for different environments and settlement dynamics. A relatively direct proxy for projectile technology is projectile impact marks (PIM) on archaeological bones. Increasing awareness and publication of experimental data sets have recently led to more identifications of PIM in various contexts, but diagnosing PIM from other types of bone-surface modifications, quantifying them, and inferring point size and material from the bone lesions need more substantiation. Here, we focus on PIM created by osseous projectiles, asking whether these could be effectively identified and separated from lithic-tipped weapons. We further discuss the basic question raised by recent PIM research in zooarchaeology: why PIM evidence is so rare in archaeofaunal assemblages (compared to other human-induced marks), even when they are explicitly sought. We present the experimental results of shooting two ungulate carcasses with bone and antler points, replicating those used in the early Upper Paleolithic of western Eurasia. Half of our hits resulted in PIM, confirming that this modification may have been originally abundant. However, we found that the probability of a skeletal element to be modified with PIM negatively correlates with its preservation potential, and that much of the produced bone damage would not be identifiable in a typical Paleolithic faunal assemblage. This quantification problem still leaves room for an insightful qualitative study of PIM. We complement previous research in presenting several diagnostic marks that retain preservation potential and may be used to suggest osseous, rather than lithic, projectile technology.

Funder

the University of Bordeaux's IdEx "Investments for the Future" program / GPR "Human Past"

Austrian Science Fund

Leakey Foundation

University of Haifa

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3