Predicting Stability of a Decentralized Power Grid Linking Electricity Price Formulation to Grid Frequency Applying an Optimized Data-Matching Learning Network to Simulated Data

Author:

Wood David A.ORCID

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Economics and Econometrics,Energy (miscellaneous),Renewable Energy, Sustainability and the Environment

Reference63 articles.

1. Wood DA (2018a) A transparent open-box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms. Adv Geo-Energy Res 2(2):148–162

2. Ackermann T, Andersson G, Soder L (2001) Distributed generation: a definition. Electr Power Syst Res 57(3):195–204

3. Bremdal BA (2014) The impact of prosumers in a smart grid-based energy market. Meter Int 2:71–73

4. Troester E (2009) New German grid codes for connecting PV systems to the medium voltage power grid. In, 2nd international workshop on concentrating photovoltaic power plants: optical design, production, grid connection, march edition: 9-10

5. Milan P, Wachter M, Peinke J (2013) Turbulent character of wind energy. Phys Rev Lett 110(13):138701. https://doi.org/10.1103/PhysRevLett.110.138701

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized LSTM for Accurate Smart Grid Stability Prediction Using a Novel Optimization Algorithm;Frontiers in Energy Research;2024-08-13

2. Enhancing Smart Grid Stability: Data-Driven Predictive Modeling in Distribution Systems;International Journal of Electrical and Electronics Research;2024-06-25

3. Efficient Artificial Neural Network for Smart Grid Stability Prediction;International Transactions on Electrical Energy Systems;2023-05-08

4. Modelling Smart Grid Instability Against Cyber Attacks in SCADA System Networks;Advances in Artificial Systems for Logistics Engineering III;2023

5. Artificial Intelligence Based Regression Models for Prediction of Smart Grid Stability;2022 Global Energy Conference (GEC);2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3