Modelling and thermodynamic properties of pure CO2 and flue gas sorption data on South African coals using Langmuir, Freundlich, Temkin, and extended Langmuir isotherm models

Author:

Mabuza MajorORCID,Premlall Kasturie,Daramola Michael O.

Abstract

AbstractCarbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide (CO2) emissions in which CO2is stored in the microporous structure of the coal matrix in an adsorbed state. The CO2adsorption process is hence considered one of the more effective methodologies in environmental sciences. Thus, adsorption isotherm measurements and modelling are key important scientific measures required in understanding the adsorption system, mechanism, and process optimization in coalbeds. In this paper, three renowned and reliable adsorption isotherm models were employed including Langmuir, Freundlich, and Temkin for pure CO2adsorption data, and the extended-Langmuir model for multicomponent, such as flue gas mixture-adsorption data as investigated in this research work. Also, significant thermodynamics properties including the standard enthalpy change ($$\Delta H^\circ$$ΔH), entropy change ($$\Delta S^\circ$$ΔS), and Gibbs free energy ($$\Delta G^\circ$$ΔG) were assessed using the van’t Hoff equation. The statistical evaluation of the goodness-of-fit was done using three (3) statistical data analysis methods including correlation coefficient (R2), standard deviation (σ), and standard error (SE). The Langmuir isotherm model accurately represent the pure CO2adsorption on the coals than Freundlich and Temkin. The extended Langmuir gives best experimental data fit for the flue gas. The thermodynamic evaluations revealed that CO2adsorption on the South African coals is feasible, spontaneous, and exothermic; and the adsorption mechanism is a combined physical and chemical interaction between the adsorbate and the adsorbent.

Funder

National Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3