Author:
Zhao Wei,Wang Kai,Zhang Rong,Dong Huzi,Lou Zhen,An Fenghua
Abstract
AbstractHigh concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas. However, the layered occurrence of coal seams with tectonically deformed sub-layers and intact sub-layers makes it difficult to effectively drain gas through commonly designed boreholes. In this study, the gas drainage performance in coal seams with different combinations of tectonically deformed sub-layers and intact sub-layers was numerically analyzed. The analysis results show that the gas drainage curve changes from a single-stage line to a dual-stage curve as the permeability ratios of Zone II (kII) and Zone I (kI) increase, raising the difficulty in gas drainage. Furthermore, a dual-system pressure decay model based on the first-order kinetic model was developed to describe the dual-stage characteristics of pressure decay curves with different permeability ratios. In the end, the simulation results were verified with reference to in-situ drainage data from literature. The research results are helpful for mines, especially those with layered coal seams comprising tectonically deformed sub-layers and intact sub-layers, to choose appropriate gas drainage methods and develop the original drainage designs for achieving better gas drainage performance.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Fundamental Research Funds for the Central Universities
State Key Laboratory Cultivation Base for Gas Geology and Gas Control
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献