Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents

Author:

Zhang Xiaobin,Wang Aoqi,Wang XingbaoORCID,Li Wenying

Abstract

AbstractThe cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction. Thus, a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents. Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions. In this study, the composition and content of liquefied solvents were analyzed. As model compounds, hexadecane, toluene, naphthalene, tetrahydronaphthalene, and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic, bicyclic, and tricyclic aromatic hydrocarbons. The solubility of hydrogen X (mol/mol) in pure solvent components and mixed solvents (alkanes and aromatics mixed in proportion to the chain alkanes + bicyclic aromatic hydrocarbons, bicyclic saturated aromatic hydrocarbons + bicyclic aromatic hydrocarbons, and bicyclic aromatic hydrocarbons + compounds containing heteroatoms composed of mixed components) are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa. The results demonstrated that at high temperatures and pressures, the solubility of hydrogen in the solvent increases with the increase in temperature and pressure, with the pressure having a greater impact. Furthermore, the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents, and the solubility of eicosanoids reaches a maximum of 0.296. The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number. The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons. The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents. Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Defense Science and Technology Innovation Fund of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3