Division of carbon sink functional areas and path to carbon neutrality in coal mines

Author:

Yang Boyu,Bai Zhongke,Fu Shuai,Cao Yingui

Abstract

AbstractRemote sensing image data of typical mining areas in the Loess Plateau from 1986 to 2018 were used to analyze the evolution of land use, explore the division of carbon sink functional areas, and propose carbon neutrality paths to provide a reference for the coal industry carbon peak, carbon-neutral action plan. Results show that (1) land use has changed significantly in the Pingshuo mining area over the past 30 years. Damaged land in industrial, opencast, stripping, and dumping areas comprises 4482.5 ha of cultivated land, 1648.13 ha of grassland, and 963.49 ha of forestland. (2) The carbon sink functional areas of the Pingshuo mining land is divided into invariant, enhancement, low carbon optimization, and carbon emission control areas. The proportion of carbon sinks in the invariant area is decreasing, whereas the proportion in enhancement, low carbon optimization, and carbon emission control areas is gradually increasing. (3) The carbon neutrality of the mining area must be reduced from the entire process of stripping–mining–transport–disposal–reclamation, and carbon emissions and carbon sink accounting must start from the life cycle of coal resources. Therefore, carbon neutrality in mining areas must follow the 5R principles of reduction, reuse, recycling, redevelopment, and restoration, and attention must be paid to the potential of carbon sinks in ecological protection and restoration projects in the future.

Funder

national basic research program of china

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3