Investigation of Valve Tip End Wear Mechanism of a Four-Cylinder Automotive Engine Under High-Speed Application

Author:

Gandhi YashkumarORCID,Pawar Ninad,Zoal Nanasaheb,Ramnathan Gurunathan

Abstract

AbstractThis work investigates the causes of wear occurring at the engine valve tip end after 400 hours of engine operation. Fatigue wear was observed on the valve tip at the product development stage of the engine, which is going to be used in an automotive vehicle. Valves were assembled on a gasoline/CNG fuel-based four-cylinder IC engine. In this engine, tip end wear was prominent during high-speed testing conditions as compared to other types of engine tests. The chemical composition of worn surfaces was verified by spectroscopy. The microstructures, grain sizes and surface roughness were determined by optical microscopy and surface roughness tester. To evaluate the wear mechanism, valve tip end worn surfaces were analyzed using Scanning electron microscopy. The SEM analysis indicates the initiation of micropits and subsequent propagation of the fatigue wear during engine operating conditions. The residual stresses were measured at valve tip end surfaces and subsurfaces using X-ray diffraction techniques. Several investigations employing multiple techniques were carried out to identify the root cause of failure while comparing results against those of untested valves. Parameters that can affect valve tip end properties were identified in the study and countermeasures provided, and that lead to successful completion of the testing with the same operating condition.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3