Author:
Asai Nobuhiro,Kubo Izumi,Kuo Hui-Hsiung
Reference20 articles.
1. Albeverio, S. and Hoegh-Krohn, R. (1976). Mathematical Theory of Feynman Path Integrals, Lecture Notes in Math. 523, Springer-Verlag, Heidelberg.
2. Asai, N., Kubo, I., and Kuo, H.-H. (1999). Log-concavity, log-convexity, and growth order in white noise analysis, Preprint.
3. Asai, N., Kubo, I., and Kuo, H.-H. (1999). General characterization theorems and intrinsic topologies in white noise analysis, Preprint.
4. Cochran, W. G., Kuo, H.-H., and Sengupta, A. (1998). A new class of white noise generalized functions, Infinite Dimensional Analysis, Quantum Probability and Related Topics 1, 43–67.
5. de Falco, D. and Khandekar, D. C. (1988). Applications of white noise calculus to the computation of Feynman integrals, Stochastic Processes and Their Applications 29, 257–266.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Feynman Integrals for a New Class of Time-Dependent Exponentially Growing Potentials;STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health;2018
2. The Feynman measure as a limit of complex measures;Journal of Mathematical Analysis and Applications;2013-01