Development and Validation of a Simple Tool for Predicting Pandemic-Related Psychological Distress Among Health Care Workers

Author:

Adorjan KristinaORCID,Dong Mark Sen,Wratil Paul R.,Schmacke Niklas A.,Weinberger Tobias,Steffen Julius,Osterman Andreas,Choukér Alexander,Mueller Tonina T.,Jebrini Tarek,Wiegand Hauke Felix,Tüscher Oliver,Lieb Klaus,Hornung Veit,Falkai Peter,Klein Matthias,Keppler Oliver T.,Koutsouleris Nikolaos

Abstract

AbstractWe aimed to develop a simple predictive model that enables health care workers (HCWs) to self-assess pandemic-related psychological distress in order to assist them to find psychological support to avert adverse distress-related outcomes. In a pilot study, we recruited and followed longitudinally 220 HCWs at the Hospital of the Ludwig Maximilian University Munich (H-LMU) during the first wave of the COVID-19 pandemic (March–July 2020). In this sample, we evaluated whether a machine-learning model with sociodemographic, epidemiological, and psychological data could predict levels of pandemic-related psychological distress. To maximise clinical utility, we derived a brief, 10-variable model to monitor distress risk and inform about the use of individualised preventive interventions. The validity of the model was assessed in a subsequent cross-sectional study cohort (May–August 2020) consisting of 7554 HCWs at the H-LMU who were assessed for depressiveness after the first wave of the pandemic.The model predicted psychological distress at 12 weeks with a balanced accuracy (BAC) of 75.0% (sensitivity, 73.2%; specificity, 76.8%) and an increase in prognostic certainty of 41%. In the derivation cohort, the brief model maintained a BAC of 75.6% and predicted depressiveness (P < .001), resilience (p.001), and coping (p < .001). Furthermore, it accurately stratified HCWs’ psychological trajectories of global and affective burden as well as behavioural adaptation over the 12-week follow-up period. Our clinically scalable, 10-variable model predicts individual COVID-19 pandemic-related psychological distress outcomes. HCWs may use our associated predictive tool to monitor personal and team-based risk and learn about risk preventive interventions based on an intuitive risk stratification.

Funder

BMBF

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. Arpaci, I., Karataş, K., & Baloğlu, M. (2020). The development and initial tests for the psychometric properties of the COVID-19 Phobia Scale (C19P-S). Personality and Individual Differences, 164, 110108. https://doi.org/10.1016/j.paid.2020.110108

2. Ahrens, K. F., Neumann, R. J., Kollmann, B., Brokelmann, J., von Werthern, N. M., Malyshau, A., Weichert, D., Lutz, B., Fiebach, C. J., Wessa, M., Kalisch, R., Plichta, M. M., Lieb, K., Tüscher, O., & Reif, A. (2021). Impact of COVID-19 lockdown on mental health in Germany: Longitudinal observation of different mental health trajectories and protective factors. Translational Psychiatry, 11(1), 392. https://doi.org/10.1038/s41398-021-01508-2

3. Ahrens, K. F., Neumann, R. J., Kollmann, B., Plichta, M. M., Lieb, K., Tüscher, O., & Reif, A. (2021). Differential impact of COVID-related lockdown on mental health in Germany. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 20(1), 140–141. https://doi.org/10.1002/wps.20830

4. Bakkeli, N. Z. (2022). Predicting psychological distress during the COVID-19 pandemic: Do socioeconomic factors matter? Social Science Computer Review, 41(4). https://doi.org/10.1177/08944393211069622

5. Bartram, D., & Hambleton, R. K. (2016). The ITC guidelines: International standards and guidelines relating to tests and testing. In F. T. L. Leong, D. Bartram, F. M. Cheung, K. F. Geisinger, & D. Iliescu (Eds.), The ITC international handbook of testing and assessment (pp. 35–46). Oxford University Press. https://doi.org/10.1093/med:psych/9780199356942.003.0004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3