Collaborative Cluster Configuration for Distributed Data-Parallel Processing: A Research Overview

Author:

Thamsen LauritzORCID,Scheinert Dominik,Will Jonathan,Bader Jonathan,Kao Odej

Abstract

AbstractMany organizations routinely analyze large datasets using systems for distributed data-parallel processing and clusters of commodity resources. Yet, users need to configure adequate resources for their data processing jobs. This requires significant insights into expected job runtimes and scaling behavior, resource characteristics, input data distributions, and other factors. Unable to estimate performance accurately, users frequently overprovision resources for their jobs, leading to low resource utilization and high costs.In this paper, we present major building blocks towards a collaborative approach for optimization of data processing cluster configurations based on runtime data and performance models. We believe that runtime data can be shared and used for performance models across different execution contexts, significantly reducing the reliance on the recurrence of individual processing jobs or, else, dedicated job profiling. For this, we describe how the similarity of processing jobs and cluster infrastructures can be employed to combine suitable data points from local and global job executions into accurate performance models. Furthermore, we outline approaches to performance prediction via more context-aware and reusable models. Finally, we lay out how metrics from previous executions can be combined with runtime monitoring to effectively re-configure models and clusters dynamically.

Funder

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference36 articles.

1. Aberer K, Hauswirth M, Salehi A (2007) Infrastructure for data processing in large-scale interconnected sensor networks. In: MDM. IEEE,

2. Al-Sayeh H, Hagedorn S, Sattler K-U (2020) A Gray-box modeling methodology for runtime prediction of Apache spark jobs. DPD

3. Alipourfard O, Liu HH, Chen J, Venkataraman S, Yu M, Zhang M (2017) Cherrypick: adaptively unearthing the best cloud configurations for big data analytics. In: NSDI. USENIX,

4. Bader J, Thamsen L, Kulagina S, Will J, Meyerhenke H, Kao O (2021) Tarema: adaptive resource allocation for scalable scientific workflows in heterogeneous clusters. In: BigData. IEEE,

5. Bilal M, Canini M, Rodrigues R (2020) Finding the right cloud configuration for analytics clusters. In: SoCC. ACM,

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Genetic Algorithm in the Analysis of Application of ATC Automatic of Data Processing;2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3