Performance Evaluation of Policy-Based SQL Query Classification for Data-Privacy Compliance

Author:

Schwab Peter K.,Röckl Jonas,Langohr Maximilian S.,Meyer-Wegener Klaus

Abstract

AbstractData science must respect privacy in many situations. We have built a query repository with automatic SQL query classification according to data-privacy directives. It can intercept queries that violate the directives, since a JDBC proxy driver inserted between the end-users’ SQL tooling and the target data consults the repository for the compliance of each query. Still, this slows down query processing. This paper presents two optimizations implemented to increase classification performance and describes a measurement environment that allows quantifying the induced performance overhead. We present measurement results and show that our optimized implementation significantly reduces classification latency. The query metadata (QM) is stored in both relational and graph-based databases. Whereas query classification can be done in a few ms on average using relational QM, a graph-based classification is orders of magnitude more expensive at 137 ms on average. However, the graphs contain more precise information, and thus in some cases the final decision requires to check them, too. Our optimizations considerably reduce the number of graph-based classifications and, thus, decrease the latency to 0.35 ms in $$87\%$$ 87 % of the classification cases.

Funder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference30 articles.

1. Adam et al (1989) Security-control methods for statistical databases: a comparative study. ACM Comput Surv 21(4):515–556

2. Biswas et al (2011) Transforming privacy policies to auditing specifications. In: 13th Int. Symposium HASE. IEEE, Boca Raton, pp 368–375

3. Danaparamita et al (2011) Queryviz: helping users understand SQL queries and their patterns. In: 14th Int. Conf. EDBT Uppsala, pp 558–561

4. Dong et al (2005) Malleable schemas: a preliminary report. In: 8th Int. Workshop WebDB Baltimore, Maryland, USA, pp 139–144

5. Fabbri et al (2013) SELECT triggers for data auditing. In: ICDE Brisbane, pp 1141–1152

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compliance Analysis Method of Hive Data Operation Based on Subgraph Isomorphism;J ELECTRON INF TECHN;2022

2. Trade-off between Privacy, Quality and Risk: Anonymization Strategy Evaluation for Data Warehouses;2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3