Airborne hyperspectral and Sentinel imagery to quantify winter wheat traits through ensemble modeling approaches

Author:

Pancorbo J. L.,Alonso-Ayuso M.,Camino C.,Raya-Sereno M. D.,Zarco-Tejada P. J.,Molina I.,Gabriel J. L.,Quemada M.ORCID

Abstract

AbstractEarly prediction of crop production by remote sensing (RS) may help to plan the harvest and ensure food security. This study aims to improve the quantification of yield, grain protein concentration (GPC), and nitrogen (N) output in winter wheat with RS imagery. Ground-truth wheat traits were measured at flowering and harvest in a field experiment combining four N and two water levels in central Spain over 2 years. Hyperspectral and thermal airborne images coincident with Sentinel-1 and Sentinel-2 were acquired at flowering. A parametric linear model using all hyperspectral normalized difference spectral indices (NDSI) and two non-parametric models (artificial neural network and random forest) were used to assess their estimation ability combining NDSIs and other RS indicators. The feasibility of using freely available multispectral satellite was tested by applying the same methodology but using Sentinel-1 and Sentinel-2 bands. Yield estimation obtained the highest R2 value, showing that the visible and short-wave infrared region (VSWIR) had similar accuracy to the hyperspectral and Sentinel-2 imagery (R2 ≈ 0.84). The SWIR bands were important in the GPC estimation with both sensors, whereas N output was better estimated using red-edge-based NDSIs, obtaining satisfactory results with the hyperspectral sensor (R2 = 0.74) and with the Sentinel-2 (R2 = 0.62). When including the Sentinel-2 SWIR index, the NDSI (B11, B3) improved the estimation of N output (R2 = 0.71). Ensemble models based on Sentinel were found to be as reliable as those based on hyperspectral imagery, and including SWIR information improved the quantification of N-related traits.

Funder

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Comunidad de Madrid

Ministerio de Ciencia e Innovación

Universidad Politécnica de Madrid

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3