OWL schema matching

Author:

Leme Luiz André P. Paes,Casanova Marco A.,Breitman Karin K.,Furtado Antonio L.

Abstract

Abstract Schema matching is a fundamental issue to many database applications, such as query mediation and data warehousing. It becomes a challenge when different vocabularies are used to refer to the same real-world concepts. In this context, a convenient approach, sometimes called extensional, instance-based, or semantic, is to detect how the same real world objects are represented in different databases and to use the information thus obtained to match the schemas. Additionally, we argue that automatic approaches of schema matching should store provenance data about matchings. This paper describes an instance-based schema matching technique for an OWL dialect and proposes a data model for storing provenance data. The matching technique is based on similarity functions and is backed up by experimental results with real data downloaded from data sources found on the Web.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference27 articles.

1. Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF, Stein LA (2004) OWL web ontology language reference. W3C recommendation. Last access on Dec 2008 at: http://www.w3.org/TR/owl-ref/

2. Bilke A, Naumann F (2005) Schema matching using duplicates. In: Proceedings of the 21st international conference on data engineering, pp 69–80

3. Lecture notes in computer science;DF Brauner,2006

4. Brauner DF, Casanova MA, Milidiú RL (2007) Towards gazetteer integration through an instance-based thesauri mapping approach. In: Advances in geoinformatics; VIII Brazilian symposium on geoinformatics (GEOINFO), pp 235–245

5. Brauner DF, Gazola A, Casanova MA (2008) Adaptive matching of database web services export schemas. In: Proceedings of the 10th international conference on enterprise information systems (ICEIS), pp 49–56

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3