Author:
Krejčiřík David,Lotoreichik Vladimir,Vu Tuyen
Abstract
AbstractWe consider the Laplace operator on a triangle, subject to attractive Robin boundary conditions. We prove that the equilateral triangle is a local maximiser of the lowest eigenvalue among all triangles of a given area provided that the negative boundary parameter is sufficiently small in absolute value, with the smallness depending on the area only. Moreover, using various trial functions, we obtain sufficient conditions for the global optimality of the equilateral triangle under fixed area constraint in the regimes of small and large couplings. We also discuss the constraint of fixed perimeter.
Funder
Grantová Agentura České Republiky
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Reference30 articles.
1. Antunes, P.R.S., Freitas, P., Krejčiřík, D.: Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10, 357–380 (2017)
2. Bareket, M.: On an isoperimetric inequality for the first eigenvalue of a boundary value problem. SIAM J. Math. Anal. 8, 280–287 (1977)
3. Bogosel, B., Bucur, D.: On the polygonal Faber-Krahn inequality, arXiv:2203.16409 [math.OC] (2022)
4. Bossel, M.-H.: Membranes élastiquement liées: Extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger. C. R. Acad. Sci. Paris Sér. I Math. 302, 47–50 (1986)
5. Bucur, D., Ferone, V., Nitsch, C., Trombetti, C.: A sharp estimate for the first Robin-Laplacian eigenvalue with negative boundary parameter. Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Nat. IX. Ser. Rend. Lincei. Mat. Appl. 30, 665–676 (2019)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献