Abstract
AbstractWe consider an abstract concept of perimeter measure space as a very general framework in which one can properly consider two of the most well-studied variational models in image processing: the Rudin–Osher–Fatemi model for image denoising (ROF) and the Mumford–Shah model for image segmentation (MS). We show the linkage between the ROF model and the two phases piecewise constant case of MS in perimeter measure spaces. We show applications of our results to nonlocal image segmentation, via discrete weighted graphs, and to multiclass classification on high dimensional spaces.
Funder
Agencia Estatal de Investigación
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
Agència Valenciana de la Innovació
Ministerio de Ciencia, Innovación y Universidades
H2020 European Research Council
Publisher
Springer Science and Business Media LLC