Estimating bee abundance: can mark-recapture methods validate common sampling protocols?

Author:

BRIGGS Emma L.,BARANSKI Christopher,MÜNZER SCHAETZ Olivia,GARRISON Gabriela,COLLAZO Jaime A.,YOUNGSTEADT Elsa

Abstract

AbstractWild bees can be essential pollinators in natural, agricultural, and urban systems, but populations of some species have declined. Efforts to assess the status of wild bees are hindered by uncertainty in common sampling methods, such as pan traps and aerial netting, which may or may not provide a valid index of abundance across species and habitats. Mark-recapture methods are a common and effective means of estimating population size, widely used in vertebrates but rarely applied to bees. Here we review existing mark-recapture studies of wild bees and present a new case study comparing mark-recapture population estimates to pan trap and net capture for four taxa in a wild bee community. Net, but not trap, capture was correlated with abundance estimates across sites and taxa. Logistical limitations ensure that mark-recapture studies will not fully replace other bee sampling methods, but they do provide a feasible way to monitor selected species and measure the performance of other sampling methods.

Funder

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3