Author:
du Toit J.,du Preez J.,Wolhuter R.
Abstract
AbstractWe present a sequential Bayesian learning method for tracking non-stationary signal-to-noise ratios in low-density parity-check (LDPC) codes by way of probabilistic graphical models. We represent the LDPC code as a cluster graph using a general purpose cluster graph construction algorithm called the layered trees running intersection property (LTRIP) algorithm. The channel noise estimator is a global gamma cluster, which we extend to allow for Bayesian tracking of non-stationary noise variation. We evaluate our proposed model on real-world 5G drive-test data. Our results show that our model can track non-stationary channel noise accurately while adding performance benefits to the LDPC code, which outperforms an LDPC code with a fixed stationary knowledge of the actual channel noise.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献