Adaptive Management to Reduce Nest Inundation of a Critically Endangered Freshwater Turtle: Confirming the Win-win

Author:

Espinoza TomORCID,Marshall Sharon M.,Limpus Duncan J.,Limpus Col J.,McDougall Andrew J.

Abstract

AbstractInundation of Australian freshwater turtle nests has been identified as a threat to recruitment and long-term viability of species such as the critically endangered white-throated snapping turtle (Elseya albagula). Water level fluctuations within water storage infrastructure can inundate significant proportions of E. albagula nests in any year. Using an ecological risk assessment framework, operating rules for a water storage in the Burnett River (South East Queensland, Australia) were implemented to support nesting of E. albagula. Turtles were encouraged to nest at higher elevations on riverbanks by maintaining higher water levels in the impoundment during the nesting season, followed by lowering of water levels during the incubation period to minimise rates of nest inundation from riverine inflows. To verify the success of the new rules, a three-year confirmation monitoring program of nest heights and water levels was undertaken. Results of confirmation monitoring showed that 3% (2018), 11% (2019) and 0% (2020) of E. albagula nests were inundated under the new operating rules, compared to previously estimated nest inundation rates of >20% in ~24% of years of a 118-year simulation period (1890–2008) under previous storage operating rules. Emergency releases from an upstream storage in 2019 and 2020 for dam safety did not affect the success of the rule, demonstrating its resilience to natural and artificial flow regimes. This study demonstrates the importance of confirmation monitoring in verifying the efficacy of targeted changes to water management, and highlights potential application across other water storage infrastructure with threatened freshwater turtle populations requiring adaptive management.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Ecology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3