Using Bayesian Belief Networks to Investigate Farmer Behavior and Policy Interventions for Improved Nitrogen Management

Author:

Jäger FelixORCID,Rudnick JessicaORCID,Lubell MarkORCID,Kraus Martin,Müller BirgitORCID

Abstract

AbstractIncreasing farmers’ adoption of sustainable nitrogen management practices is crucial for improving water quality. Yet, research to date provides ambiguous results about the most important farmer-level drivers of adoption, leaving high levels of uncertainty as to how to design policy interventions that are effective in motivating adoption. Among others, farmers’ engagement in outreach or educational events is considered a promising leverage point for policy measures. This paper applies a Bayesian belief network (BBN) approach to explore the importance of drivers thought to influence adoption, run policy experiments to test the efficacy of different engagement-related interventions on increasing adoption rates, and evaluate heterogeneity of the effect of the interventions across different practices and different types of farms. The underlying data comes from a survey carried out in 2018 among farmers in the Central Valley in California. The analyses identify farm characteristics and income consistently as the most important drivers of adoption across management practices. The effect of policy measures strongly differs according to the nitrogen management practice. Innovative farmers respond better to engagement-related policy measures than more traditional farmers. Farmers with small farms show more potential for increasing engagement through policy measures than farmers with larger farms. Bayesian belief networks, in contrast to linear analysis methods, always account for the complex structure of the farm system with interdependencies among the drivers and allow for explicit predictions in new situations and various kinds of heterogeneity analyses. A methodological development is made by introducing a new validation measure for BBNs used for prediction.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3