An Innovative Lens Type FinLine to Microstrip Transition

Author:

Valletti L.ORCID,Fantauzzi S.ORCID,Di Paolo F.ORCID

Abstract

AbstractDue to the disadvantages of vacuum tubes in terms of warm-up time, size, and high-voltage needs, solid-state power amplifiers (SSPAs) with gallium nitride (GaN) monolithic microwave integrated circuits (MMICs) are the key solution for power levels up to some kilowatts in continuous wave. An SSPA is the most convenient solution for these RF power levels due to its low weight, small size, negligible warm-up time, low-voltage operation, and high reliability. Spatial power amplifiers (SPAs) combining techniques are the best candidates for SSPAs due to the intrinsic low attenuation in dividing and combining functions. SPAs mainly use two types of probes: transverse and longitudinal, such as FinLines. This paper describes a broadband FinLine to microstrip (FLuS) transition based on dielectric lens theory. Comparative simulations with traditional FinLine transitions show a significant improvement in matching performances and a very significant increase in mechanical resistance of the transition. The proposed innovative FLuS uses a substrate shaping designed according to dielectric lens theory. Frequency simulations of a FLuS inside the WR22 waveguide are shown. These evidence the better performances of this transition than the classic FLuS transition using quarter-wave transformer (QWT) matching. A Q band spatial power combiner with dielectric lens FLuS was made and measured, showing the excellent performances of this innovative FLuS transition.

Funder

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation,Radiation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Waveguide-to-Microstrip Nonbinary Power Dividers;IEEE Microwave and Wireless Technology Letters;2024-04

2. Low-loss millimeter-wave resonators with an improved coupling structure;Superconductor Science and Technology;2024-02-08

3. Multiphysics Analysis of High-power Vacuum Feedthrough for DTT ICRH System;2023 Photonics & Electromagnetics Research Symposium (PIERS);2023-07-03

4. Comprehensive Analysis of a Slow Wave Structure for an X-band MILO;2023 Photonics & Electromagnetics Research Symposium (PIERS);2023-07-03

5. Innovative Mode Enhancement for High Power Coaxial Vircators;IEEE Transactions on Electron Devices;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3