Impact Ionization Induced by Terahertz Radiation in HgTe Quantum Wells of Critical Thickness
-
Published:2020-04-06
Issue:10
Volume:41
Page:1155-1169
-
ISSN:1866-6892
-
Container-title:Journal of Infrared, Millimeter, and Terahertz Waves
-
language:en
-
Short-container-title:J Infrared Milli Terahz Waves
Author:
Hubmann S.,Budkin G.V.,Urban M.,Bel’kov V.V.,Dmitriev A.P.,Ziegler J.,Kozlov D.A.,Mikhailov N.N.,Dvoretsky S.A.,Kvon Z.D.,Weiss D.,Ganichev S.D.
Abstract
AbstractWe report on the observation of terahertz (THz) radiation induced band-to-band impact ionization in HgTe quantum well (QW) structures of critical thickness, which are characterized by a nearly linear energy dispersion. The THz electric field drives the carriers initializing electron-hole pair generation. The carrier multiplication is observed for photon energies less than the energy gap under the condition that the product of the radiation angular frequency ω and momentum relaxation time τl larger than unity. In this case, the charge carriers acquire high energies solely because of collisions in the presence of a high-frequency electric field. The developed microscopic theory shows that the probability of the light-induced impact ionization is proportional to $\exp (-{E_{0}^{2}}/E^{2})$
exp
(
−
E
0
2
/
E
2
)
, with the radiation electric field amplitude E and the characteristic field parameter E0. As observed in experiment, it exhibits a strong frequency dependence for ωτ ≫ 1 characterized by the characteristic field E0 linearly increasing with the radiation frequency ω.
Funder
Deutsche Forschungsgemeinschaft Elitenetzwerk Bayern Volkswagen Foundation Foundation for the Advancement of Theoretical Physics and Mathematics European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation,Radiation
Reference59 articles.
1. S. Sze and K. K. Ng, Physics of semiconductor devices, John Wiley and Sons Inc., New York, 2006. 2. P. T. Landsberg, H. Nussbaumer, and G. Willeke, ., J. Appl. Phys. 74 (1993), 1451. 3. F. Capasso, Physics of Avalanche Photodiodes, In: Semiconductors and Semimetals, Elsevier, 1985. 4. S. D. Ganichev, A. P. Dmitriev, S. A. Emel’yanov, Y. V. Terent’ev, I. D. Yaroshetskii, and I. N. Yassievich, ., Pis’ma Zh. Eksp. Teor. Fiz. 40 (1984), 187. [JETP Lett. 40, 948 (1984)]. 5. S. D. Ganichev, A. P. Dmitriev, S. A. Emel’yanov, Y. V. Terent’ev, I. D. Yaroshetskii, and I. N. Yassievich, ., Zh. Eksp. Teor. Fiz. 90 (1986), 445. [JETP 63, 256 (1986)].
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|