Latency reduction for narrowband URLLC networks: a performance evaluation

Author:

Amjad ZubairORCID,Nsiah Kofi Atta,Hilt Benoît,Lauffenburger Jean-Philippe,Sikora Axel

Abstract

AbstractFifth-generation (5G) cellular mobile networks are expected to support mission-critical low latency applications in addition to mobile broadband services, where fourth-generation (4G) cellular networks are unable to support Ultra-Reliable Low Latency Communication (URLLC). However, it might be interesting to understand which latency requirements can be met with both 4G and 5G networks. In this paper, we discuss (1) the components contributing to the latency of cellular networks and (2) evaluate control-plane and user-plane latencies for current-generation narrowband cellular networks and point out the potential improvements to reduce the latency of these networks, (3) present, implement and evaluate latency reduction techniques for latency-critical applications. The two elements we detected, namely the short transmission time interval and the semi-persistent scheduling are very promising as they allow to shorten the delay to processing received information both into the control and data planes. We then analyze the potential of latency reduction techniques for URLLC applications. To this end, we develop these techniques into the long term evolution (LTE) module of ns-3 simulator and then evaluate the performance of the proposed techniques into two different application fields: industrial automation and intelligent transportation systems. Our detailed evaluation results from simulations indicate that LTE can satisfy the low-latency requirements for a large choice of use cases in each field.

Funder

ivESK, Hochschule Offenburg

Région Alsace

Bundesministerium für Bildung und Forschung

Hochschule Offenburg

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An optimized congestion control protocol in cellular network for improving quality of service;Multimedia Tools and Applications;2024-09-09

2. Cloud, fog, edge computing and 5G technologies for industrial automation;Manufacturing from Industry 4.0 to Industry 5.0;2024

3. Mapping prediction with recurrent neural networks for future LISP enabled networks;Journal of Information and Intelligence;2023-07

4. Performance Evaluation of D2D Communications in of LTE-A Network;2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2023-05-21

5. CCPAV: Centralized cooperative perception for autonomous vehicles using CV2X;Ad Hoc Networks;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3