Author:
Gómez Jaime,Guerra André,Ramos João P. G.,Tilli Paolo
Abstract
AbstractWe prove a sharp quantitative version of the Faber–Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit $\delta (f;\Omega )$
δ
(
f
;
Ω
)
which measures by how much the STFT of a function $f\in L^{2}(\mathbb{R})$
f
∈
L
2
(
R
)
fails to be optimally concentrated on an arbitrary set $\Omega \subset \mathbb{R}^{2}$
Ω
⊂
R
2
of positive, finite measure. We then show that an optimal power of the deficit $\delta (f;\Omega )$
δ
(
f
;
Ω
)
controls both the $L^{2}$
L
2
-distance of $f$
f
to an appropriate class of Gaussians and the distance of $\Omega $
Ω
to a ball, through the Fraenkel asymmetry of $\Omega $
Ω
. Our proof is completely quantitative and hence all constants are explicit. We also establish suitable generalizations of this result in the higher-dimensional context.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Abreu, L.D., Dörfler, M.: An inverse problem for localization operators. Inverse Probl. 28(11) (2012)
2. Abreu, L.D., Speckbacher, M.: Donoho-Logan large sieve principles for modulation and polyanalytic Fock spaces. Bull. Sci. Math. 171, 103032 (2021)
3. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Commun. Math. Phys. 322, 515–557 (2013)
4. Aleksei, K.: Functionals with extrema at reproducing kernels. Geom. Funct. Anal. 32(4), 938–949 (2022)
5. Allen, M., Kriventsov, D., Neumayer, R.: Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula. Ars Inveniendi Analytica, 49 (2023)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献